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Abstract

A sense of vision is a prerequisite for a robot to function in an unstructured environment. However,
_-wor!d scenes cont.ain m_ny intera_ng phenomena that lead to complex images which are difficult
to interpret automatically. Typical computer vision research proceeds by analyzing various effects in

isolation (e.g. shading, textuxe, stereo, defocus), usu',dly on images devoid of realistic complica_g
factors. This leads to specialized algorithms which fail on real-world images. Part of this failure is
due to the dichotomy of useful representations for these phenomena. Some effects are best described
in the spal_al domain, while others are more harm-allyexpressed in frequency. In e_der to resolve tl-ds
dichotomy, we present the combined space/faequency representationwhich, for each point in an image,

shows the spatial fiequencies at that point. Within this common representation, we develop a set of
simple, natural theories describing phenomena such as textuxe, shape, aliasing and lens parameters. We
show how these theories lead to algoriLhms foz shape from texture and for dealiasing image data. The
space/frequency representation should be a key aid in untangling the complex interaction of phenomena

in images, allowing automatic understanding of real-world scenes. /"t. _-"-"
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1 Introduction

In order to function in the real world, robots need to be able to perceive what is around them through a
vis_ml sense. Unfortunately, the world is very complex, and current approaches to machine vision have not

proven successful at dealing with this complexity. Because of this, most "real systems" for machine vision
are actually based on many very specialized assumptions about the world; on the other hand, researchers

doing theoretical work study just one simple phenomenon at a time, but cannot deal with the interactions that

are always present in realistic scenarios. These circumstances have led to very slow progress in developing

real vision systems that have generality and a sound theor*.tical foundation.

In this paper, we examine the area of spatial vision - all of the 2D and 3D geometric factors that combine t

result in the arrangement of features in the image. The factors of spatial vision include:

2D Texture: Patterns "painted" on a flat, smooth surface show up as patterns in the image.

3D Texture: Roughness and topography of the surface interact with lighting to produce additional patterns

in the image.

Surface Shape and Perspective: The 3D orientation of a surface causes its patterns to project in a particular

way onto the image plane.

Image Resolution: The resolution of the sensor induces sampling and aliasing in the image data, sometimes

even causing noticeable moire patterns.

Focus: The optics of the lens induces blurring in the imaging process due to defocus.

Other Factors: There are numerous other factors we shall not address further in this paper, including some
whose magnitude is much smaller than the factors listed above (e.g. diffraction), and some that involve
additional imaging parameters (e.g, shadows, motion blur).

For each of the above phenomena, there has already been substantial theoretical vision research and some-
times real systems. However, the theories invariably deal with just one or just two of the above factors; and

the real systems wolk by virtue of the highly limiting assumptions that are imbedded within the algorithms,
such as building in a specific size range of textures to be analyzed.

The real world is not so well-behaved. Real images exhibit these factors simultaneously, as we illustrate in

Figure 1. This image, synthetically generated, shows two objects with Brodatz [Bro66] textures mapped onto

their surfaces. The textures themselves would pose a difficult analysi_ problem even if they were viewed
frontally, as is usuaily presumed in research into 2D texture analysis. However, in this scene, the textures

are mapped onto 3D surfaces, one curved and one polyhedral. Thus, the size and spatial relationships among
the repetitive elements may change across an object or a surface. Because the resolution of the imaging

sensor is finite, the texture elements or their component features may even become so small that they are

blurred out of perceptibility - yet the same texture persist_ in that place in the real world, even though we
can't explicidy see and measure it. The texture patterns themselves are not pe_¢ecfly repetitive and may
vary, and these variations should not be confused with the other sources of variation across a surface. And,
this figure doesn't even demonstrate the effects of 3D texture - we mapped the Brodatz intensity patterns
onto simulated smooth surfaces - or of defocus, which would cause the texture to blur selectively at some
places in the image.
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Figure 1: Cylinder and cube with Brodatz textures

Analyzing such combinations of sprtial features is far beyond the capability of current robot vision systems.

Yet, the real world presents just such interactions, not just on rare occasions, but on virtually every surface in

eve,'3' image that we care to analyze. In order to build reliable, general visi3n systems, we need to explicitly
tmder_tand, model, and analyze each of these phenomena and their interactions.

One of the principal reasons for the slow progress in this direction is the lack of e_en a suitable representation

that would allow us to model all of these spatial phenomena in one framework. The use of a single framework

is critical, b,-_causeif each phenomena is described in a different formalism, then their interactions become
combinatorially complex even to describe mathematically. But, if a single framework is used, then all of the
interactions can be naturally expressed within the same vocabulary.

What framework can be used? The spatial/geometry domain provides elegant descriptions of surface shape
and perspective, not-so-elegant descriptions of focus and resolution, and, as the 2D texture community has

shown, poor descriptions of 2D texture and repetition. The Fourier domain appears elegant for 2D texture,
focus, and resolution. Unfortunately, the frequency domain has great problems with 3D surface shape,
mu!tiple surfaces in the scene, and curved surfaces or other sources of local texture variation, because the
Fourier transform mixes together frequency information from all across the image without any notion of

loccF.ty. Obviously, no representation can be a general basis for spatial vision if it has no concept of locality
within the image.

What we seek is a representation for image data that provides frequency data, but does so within the context

of surfaces and other local neighborhoods of the image. There exists a class of representations that does
just this: the so-called space�frequency distributions. These have been proposed specifically for analysis
of 2D textures on fiat surfaces in the past, but as shown above, that is a small part of the total problem
of spatial vision. In this paper, we show that this same class of representations can be used as an elegant

representation for all of the phenomena described above, in 3D as well as 2D. We concentrate on a particular
space/frequency distribution, the image spectrogram, because it has properties that appear most desirable
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Figure 2: Figure 1 with spectrogram of center row

for general robot vision.

We show the spectrogram of the center scan-line of Figure 1 superimpov-.xlin Figure 2. The spectrogram is

a two-dimensional function of space (horizontal axis) and frequency (vertical axis). Because me underlying
patterns on the two objects are periodic, there are dark, frequency peaks in the spectrogram where the objects

occur. The large, "U"-shaped frequency peak on the left shows tl_, the frequency of the texture pattern
projected from the cylind_ appears higher near the edges than in the middle, as one would expecL At the
extreme edges of the cylinder, the projected frequen_ is so high it cannot be adequately reproduced in the
image. This is shown in the spectrogram as the frequency peak bumping into the Nyquist frequency at the
top. On the left side o! the cube, we see a slowly decreasing fundamental frequency and overtones which
are likewise decreasing. This decrease continues to the comer of the cube, where the fundamental a_d
,_,,_motti:s begin to increase as the side recedes into the distance. This is a sample of the kind of analysis
possible with the spectrogram.

Theremainderofthispaperexploresinmoredetailtheconnectionsbetweentheimagespectrogramandthe
3D scene./_'aoughwe do notpresentany"real"visionalgorithms,we seetopresentthespace/frequency

representationa_animportant,unk°yingframeworkforfuturework incomputervision.Our rese.erchisin

itsearlystages,soouropinionoftherepresentationrenufinsspeculativebutoptimistic.

1.1 Previous Work

Because local spatial frequency analysis is especially well-suited to investigating repetitive patterns, most

of the work similar to ours has been in image texture. There is a large set of work on texture, so much o that
at least three survey papers have bee._ published on the topic [Har79] [Wec80] [VGDO85]. We will restrict
our comments to those efforts in which local spatial frequency analysis plays a dominant role. While much

of the work we review is aimed at analyzing texture, other concerns the issue of im,'_gerepresentation.
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Previous work with windowed Fourier uansfor,,is in computer vision reveals some of the potential utility of
local spatial frequency analysis. Image spectrograms have been used for a variety of image analysis work,
includin_ texture segmentation and shape from text.re. In one r_ethod of statistical texture segmentation,

a small number ot Ieatures is extracted from windowed Fourier uansforms taken over the image. Fouriea

transform methods are frequently included in comparisons of statistical texture segmentation techniques,

although they are generally outperformed by other methods [DR76]. Bajcsy and Lieberman [BL76] recovered
information about the shape of textured surfaces by examining the shape and behavior of peaks in windowed

Fourier transforms over the image. Because they used non-overlapping windows, their analysis was based

on a coarse sampling in space of the spectrogram. Matsuyama et al. [MMN83] used Fourier mmsforms

taken over regions of uniformly distributed texture elements in order to fin_.1the two spatial vectors which
characteri_, the placement o.",he elements. The Fourier transform has also been considered for calculating
the point of best focus for an entire image by Horn [Hor68], and for a subsection by Krotkov [Kro87].

Penfland uses the Fourier transform for both shape from focus [een85] and shape from shading [Pen88].

All of these approaches use the Fourier transform over eithel the whole image o_"a fairly large region. The

Fourier transform, however, hides the spatial coherence of the image. Thus, although one can identify

the component frequencies of an image, their location in the image is a mystery. Large-support Fourier

transforms tend to smear the frequency peaks of signals w_,oge frequency is changing (e.g. a periodic
pattern on a tilted plane) and confound the analysis of signals with spatially distinct subcomponents (e.g.

two adjacent textures). A solution tc this problem is the space/frequency representation which shows the

frequency content of only small, local regio,ls of the signal.

One popular space/frequency iepresentation is the W:,.gnerDistribution (WD), introduced by Wigner for use

in quantum mechanics. Like the spectrogram, the WD produces a function of both space and frequency

from a fu._ction c_space alone. 1 An informative introduction to the WD can be found in a three-part series
by Claasen and Mecklenbrfiuker [CM80a] [CM80b] [CM80c]. Practically speaking, the WD can effectively

deal with signals whose freq_:-.ncyis changing, giving a clear indication of their instmataneous frequency. It

has been applied to te),ture segmen:.'_tionby Reed and Wechsler ['RW90] and to shape from texture by Jau
and Chin [JC88]. Both the spectrograto and WD are joint representations of space and spatial frequency.

Such representatior's are reviewed and compared by Jacobson and Wechsler [JW88]. A description of the

WD and our reasons for not using it are presented below in Section 2.2.

An early effort aimed at creating a joint representation was that of Gabor [,3ai:¢,6], who proposed l_e use

of one-dimensional, Gaussian-modulated sinusoids as basis functions which are maximally compact in both
time (space) and frequency. Mar_elja [Mar80] found that these functions describe the response of visual

cortex cells. The theory was extended to two dimensions by Daugmau [DauB5], who showed that the

two-dimensional Gabor functions can describe the cells of the visual cortex. Gabor-function filtering has

been applied to the tasks of texture segmentation by Turner [Tur86] aradBovik et al. [BCG90], and to optical
flow extraction by Heeger [Hee88]. Fogel and Sagi [FS89] found that Gabor function texture segm"".tatiou

closely paralleled human performance. Most work in image analysis of this type uses the Gabor functions

as convolution filters, but not as a form of complete image representation. The Gabor functions are a
complete, but not orthogonal, set of basis functions. Nonorthogonal basis functions complicate the process

of decomposition, although it has been achieved with a neural network by Daugman [Dau88].

Mallat [Ma189] has developed a theory for the multiresolution representation of images called an "orthogonal
wavelet representation". It is composed of a low resolution image and successively higher resolution

"difference" images which fill in the details of the previous images. The representation falls between the

space and frequency domains, and gives an idea ef the predominant frequencies at every point in the image.

iWenotethatmuchoftheworkinspace/frequencyrepresentationsispresentedintermsoftimeratherthanspc,ce.
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A significant difference between the wavelet and Gabor representations is that the wavelet representation
has orthogonal basis functions, making the representation easy to compute.

1.2 This Paper

Our work is distinguished from most of that above, not by the particular representation we have chosen,
but by how we propose to analyze the local spatial frequencies. Most of the work in texture analysis above
uses just a small set of frequencies, usually for segmentation. Our work demonstrates how a denser set of
frequencies at each point can be used not only for segmentation, but to chart other space-varying properties
in the scene.

In this paper we show how a joint space/frequency representation can be used to effectively examine a

varietyof important phenomena in computer vision. In the next section, we examine two of the most Popular
joint representations - the spectrogram and the Wigner distribution - and we compare their usefulness for
3D image understanding. In Section 3 we show how the spectrogram maintains coherence over regions

of similar texture, even if the texture is changing in frequency. Making this coherence explicit means that
th_ spectrogram can be used for segmentation on textures other thanjust those on a plane viewed frontally,
which is an implicit limitation in most texture segmentation algorithms. In Section 4 we show how 3D
object shapes affect the spectrogram. We examine in detail the spectrogram of a texture along a line and
demonstrate how we can accurately extract shape parameters in this simple case. Section 5 shows how
spatial aliasing (moire patterns) affects the spectrogram. In Section 6 we show how changes in a camera's
lens parameters (zoom, focus, and aperture) affect the spectrogram in a predictable way. The zoom analysis,
combined with the development on aliasing, leads to an algorithm for dealiasing images of simple textures.
We exarmne other issues in Section 7.

2 Space/Frequency Representations

Contiguoustexturepatternsina scenenormallydo notappearascon.qtantfrequencypatternsinanimage,

becausetheunderlyingshapeisusuallynotplanar.Even ifitwere,thefrequencywouldonlyappearconstant
ifthetexturewereveiwedalongtheplane'snormal..'Pans,frequencyanalysisoftextureinnontrivialscenes

requiresa methodwhichcanaccountforchangesinfrequencywithposition.Thisisbeyondtheabilityof

conventional,largesupport,Fouriertransforms,soothermethodshavebeendevised.

We show two examplesof idealizedspace/frequencyrepresentationsinFigures3 and 4. Figure3-a
showsa simplesinusoidalwave,andFigure3-bshowsthemagnitudeofitsFouriertransform.The ideal

space/frequencyrepresentationappearsinFigure3-c,andshowsthatthesignal'sfrequencyu isconstant

withrespecttothespatialvariablex.Figure4-ashowstwo sinusoidalwavesinwhichthehigher-frequency

waveoccupiesthecenterquarterofthesignal.The FouriertransformofthissignalisshowninFigure4-b.

Althoughitshowstwopairsoffrequencypeaks,itdoesnotshowwhereinspacethesubsignalsofcorre-
spondingfrequencyoccur.The structureofthesignalismade clearinthespace/frequencyrepresentation

ofFigure4-c,whichshowsthata relativelylow-frequencycomponentexistsattheendsofthesignalin

question,whilea higher-frequencypartoccursinthemiddleonequarter.Thislocalizationisthepowerof
thespace/frequencyrepresentation.

Signalswhosefrequencychangeswithpositionarecallednonstationary.A simpleexampleiscos(2;zuox2/2).

The instantanpousfrequency of such a signal is defined as the derivative of the argument with respect to
the spatial variable - in this example, uox (in cycles/refit distance). Certain frequency-based, texture

5
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segmentation algorithms [DR76] do not require an accurate estimate of the instantaneous frequency, only
one which is sensitive to significant differences in frequency. Thus, they can work with only a coarse
sampling in frequency. In our work, however, we are concerned with small changes in frequency, due to,
for instance, surface slope or variations in zoom. Thus, we require a high resolution, accurate estimate of
the instantaneous frequency.

We consider in this section the two primary means of calculating space/frequency representations: the

spectrogram and the Wigner distribution. A third method is to fit sinusoids to the signzl over small windows;

although it is slow, it leads to high resolution estimates. Both this method and the spectrogram arc based on
the assumption that the signal is locally stationary. The WD relaxes this assumption.

Our analysis in this section and the rest of this papex"will be limited to one-dimensional signals. This not

only simplifies understanding the mathematics, but makes visualization of the representation much easier.

For a 1D signal, the space/frequency represe'-tation is two-dimensional, while for a 2D signal (an image),

it is four-dimensional. Our example spectrograms are superknposed on 2D images. In these figures, the
spectrogram was computed from the center row of the image. We include the entire image to illustrate more

clearly the various effects we are considering.

2.1 The Spectrogram

The spectrogramofa signalisa seriesofsmall-support,Fouriertransformsofthesignal,eachcentered

aroundadifferentpointo£thesignal.Foraone-dimensionalsignalf(x),thespectrogr,_mi_S/(x.u),where

u isfrequencyincycles/unitdistance.Sf(x.u)isanestimateofthepoweroffrequencyu atthepointx.TEe
continuousspectrogramoftheone-dimensionalfunctionf(x)isgivenby

$/(x.u)= :__ wt(e,- x)f(cOe-:z-"°da2.

wherewl(x)isawindowfunctionwithsupportlengthI.

TheprocessbywhichaspectrosramiscalculatedisshowninFigure5.To calculateoneverticalsliceofthe
spectrogramforagivenvalueofx,sayXo,thesignalisfirstmultipliedby awindow offsetbyxo.Thisproduct

isFourieru',-,nsformed;themagnitudeiscalculatedfromthecomplexv_uesoftheFouriertransform;and

thenon-negativehalfofthemagnitudesserveas$!(;co.u),w_fichis_,aecolumnofthespectrogram.This

processisrepeatedforeveryx.We onlyconsiderthenon-negativehalfofthemagnitudessincetheFourier
transformof a realsignal(theonlykindwe have)issymmetricinmagnitude.The discreteversionis

computedusingthediscreteFouriertransform(DFT),whichisdiscreteinbothspace,andfrequency.The

window functioncontrolshow much oftherestofthesignalcontributestothespectrogramatthepointx.
IntermsofWt(u)andF(u),theFouriertransformsofwt(x)andf(x),thespectrogramis

$/(x.u) (e-:2-_'Wl(u))F(u)2= • • (1)

where "." is convolution.

The spectrogram of a two-dimensional functionf (x. y) is a straightforward extension of the equation above,

giving a four-dimensional spectrogram, S! (x. y. u. v), with two spatial variables and two frequency variables.

There are ongoing questions about the best shape and size of the window wt(x). Many window shapes arc
considered by Harris in [Har78]. He illustrates the compromises involved in the selection, and concludes by
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Figure 5: Computing the spectrogram

._-z_ommending the ,*-sample Blackman-I-larfis window. We use the minimum, 4-sample Blackman-Harris
window, which for a discxete set of n points is given by

wn(k)=ao-alcos __1 k) +a2eos \n- 1 J -a3cos n_--_3k) (2)

for k = 0.1 ..... n - 1 and (ao.al .a2.a3) = (0.35875.0.48829.0.14128.0.01168).

The window size 1 (or in the discrete ease n) affects how much of the signal is included ira the Fourier

transform at each point. Equation 1 above shows that the effect of windowing is to convolve the Fourier
transform of the signal, F(u), with the Fourier transform of the window, Wi(u). This can be thought of as a
blurring of the signal's spectrum with Wt(u). As the width of the window decreases, the width of Wt grows,

meaning that the spectrum will be more smeared. Thus, a large window is desirable for a sharp spectrum.

However, a large window will compromise the localization ability of the spectrogram, as it will include

components of the signal which are distant from the point of interest. In practice, we have found n = 63 to
be satisfactory on diser=t_ signals of length 512 (o._e image scan-line). We investigate a more sophisticated

windowing techmque in Section 7.1.

2.2 Wigner Distribution

An alternative method of calculating a joint space/frequency representation of a signal is the Wigner
distribution. The Wigner distribution has been used in the computer vision community for both texture
segmentation[RW901 and shape from texture[JC88]. For a one-dimensional function f (x), the Wigner
distribution is
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Wy(x.u) = f(x+ n/2)f'(x - n/2)e-2-U"dn.

In words, the way to compute Wf(x. u) is to first calculate the productf (x + :,/2)f "(x - n/2), which is
the original signal multiplied by a conjugated version of the original signal flipped around the point x.

This product is Fourier transformed to get the WD atx. In practice, f (x) is first windowed, leading to the
pseudo-Wigner distribution (PWD) [CM80a]. The open questions pertaining to the window function for the
spectrogram also apply to the PWD.

The WD generally works best on analytic signals, i.e. signals whose Fourier transforms contain no negative

frequencies [Boa88]. It is fairly straightforward to calculate an analytic signal which corresponds to a real

signal defined by samples. Thus, our two examples will be for analytic signals.

The example to which many WD advocates point is the WD of the chirp signal f (x) = d_`'°x2/2. This
nonstationary, complex sinusoid is the analytic extension of cos(2r, uo.r2/2), whose instantaneous frequency

is Uo.r(frequency proportional to x). The WD is

:)c.
W/(x.u) = e12-u*(x+<'12)z12d'2-u*(x-_'12):12e-.t2"U<'dn

-.<

= ru,x,_e-12 ruodn
m .

= _(u- uox).

In (x. u) space, this is a 6-ridge which tracks at exactly the instantaneous frequency off (x). For any x, the

position of the ridge is at uox, which is exactly what we would like to see for this signal.

- Most textures are not simple sinusoids, however. They are, rather, sums of sinusoids in the sense of Fourier
series. Itis desirable that thejointrepresentation show multiple frequency peaks at theeonstituentfrequencies
of the texture. This means that the representation should be linear - that the representation of the sum of two
sinusoids should be the sum of the representations of the two sinusoids by themselves. Unfortunately, the

WD is not linear. That is, W/+g(x. u) # W/(x. u) + Wt(x. u). We show in Figure 6 the spectrogram (on the left)
and the Wigner distribution (on the right) of a sum of two sinusoids. Letf (x) = d_'u/s and g(x) = e1_u,x,

both constant-frequency, complex sinusoids with frequencies u/and ut respectively. We have

W/(x.u) = _(u- u/).

W_(x.u) = _(u - us).

W/+,(x.u)= W/(x.u)+W,(x.u)+2cos[2rrx(u/-u,)]'(uu/+ug).2

Thus the WD of a single, complex sinusoid is what we would expect, but the WD of a sum of sinusoids has

a cross term. This term is a b in u at the mean frequency of the two original sinusoids, modulated in x at a
frequency which is the difference in frequencies of the tx_ooriginal sinusoids. The WD gives cross terms
for every pair of constituent sinusoids. The cross term of the WE) is clearly visible in Figure 6.

The analysis that follows in this paper depends on accurately finding the frequency peaks in the j.-'int

representation. Noise in some of the images complicates this task. The cross terms introduced by the WD
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spectrogram

Figure 6: Spectrogramand Wigner distributionof two summedsinusoids
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would make it even more difficult to distinguish the true frequency peaks. It is for this reason that we have
chosen not to use the Wigner distribution.

The Wt9 is just one member of a more general family of joint representations. Others [CW89] [ZAM90],

may be able to deoJ with nonstationarities as well as the WD while still suppressing cross terms. However,
there does not exist a definitive method for calculating the space/frequency distribution.

3 Two-Dimensional Texture Segmentation With the Spectrogram

It is often the case that regions in an image can be grouped by their similarities in texture. In segmenting a road

image, for example, it may be that the only common feature that the grassy areas share is texture, because the
intensity and color of the grass in the image may be very different from shadowed to nonshadowed regions.

By two-dimensional texture segmentation we mean segmentation on images with textures whose frequency

does not change appreciably over the image. The textures must be viewed frontally; this is how almost all
texture segmentation algorithms are tested.

The spectrogram of a structured texture shows that the spectrogram gives a clear, easily interpretable

representation of the texture and a good idea of the texture's boundaries. In Figures 7 and 8 we present two

pairs of textures along with the spectrograms of the rows indicated by the lines across the middle of the
images. The smaller, left plate in Figure 7 has a sinusoidal intensity pattern, while the larger plate visible

on the fight has a square wave pattern. The left half of the spectrogram shows one peak in frequency which
is constant with respect to position, as we expect from a sinusoidal intensity pattern. The right half of the

spectrogram shows the fundamental frequency of the square wave pattern as the dark line near the bottom of

the spectrogram along with fainter overtones at evenly spaced intervals above. The frequency of the square
wave's first harmonic happens to be about equal to the frequency of the sinusoid on the left. The sharp

transition between the two textures produces a short region in the spectrogram where nearly all frequencies

are present. The light, vert/cal bars on the fight half of the spectrogram are due to the interaction of the
simulated pixels with the periodic pattern.

Figure 8 shows the same two plates with Brodatz textures superimposed. The complexity of the Brodatz
images makes the spectrograms messier, but the representation is still easy to interpret. T,,_ white band

at the bottom of the spectrogram ha.obeen zeroed to eliminate low frequency intensity variations due to

lighting. We see that the scan line of the canvas texture on the left is close to sinusoidal since it has only one
significant frequency component. The screen texture on the right has a lower fundamental frequency than
the cap.vas as well ac some overtones.

There have been many efforts aimed at 2D texture segmentation using windowed Fourier tcansforms, for

instance [Gra73] and [Kh76]. These algorithms usually proceed by picking some set of features from Fourier

space and then clustering using traditional pattern recognition techniques. The method has been compared to
others both empirically [WDR76][DR76] and theoretically [CHS0]. While the Fourier features performed

adequately, they were outperformed by other statistical texture measures.

The advantages of Fourier texture measures over other statistical texture measures come from the variety of
textures it can manage and the ease with which it can be extended to textures which are viewed obliquely.

For structural textures, the Fourier transform approach requires no feature detection. Windowed Fourier

transforms can be used for purely statistical textures, because FomS;er transforms can bring out statistical

coherence. In all textures, the spectra remain coherent over changes in shape, which means that the
method can be smoothly extended to non-frontally viewed textures. In addition, the spectrogram is a
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Figure 7: Two plates with sinusoidal and square wave gratings

Figure 8: Two plates with Brodatz textures
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powerful framework for analyzing many other sceve phenomena and can be used to extract intrinsic scene
characteristics. These intrinsic paramete,s provide another, more reliable basis for segmentation.

4 Three-Dimensional Shape and the Spectrogram

Texture is an important indication of 3D shape, and the connection has been studied extensively in computer
vision. However, past efforts at exploiting this connection have been based on either the detection of explicit

features or the computation of local statistics. The features and statistics are normally conceived in an ad

hoc manner for the specific task of shape extraction. The spectrogram is a more natural choice for this kind
of analysis, because the projected, local spatial frequencies on a textured surface change with the surface's

depth and orientation, and because it is simple to account for other phenomena besides shape such as aliasing,

defocus, and lens parameters.

In Figure 9 we show a plate receding into the distance with a sinusoidal intensity pattern superimposed.

The spectrogram of the center scan line shows that the projected frequency increases as the plate recedes.
This scene illustrates the effect of a vanishing line. Both the plane (from which the plate is taken) and the
spectrogram asymptotically approach a line. The plane's asymptote is its vanishing line in the image. The
corresponding frequency rises to infinity as it nears the vanishing line, as shown in the sketch of the ideal

spectrogram. Before the plate reaches this point, the frequency has so grown that the actual spectrogram

shows aliasing (see Section 5), which is the "fuzz" just to the left of the asymptote. The ideal spectrogram
has no upper bound on frequency.

Figure 10 shows two plates meeting at a convex comer, each with a sinusoidal intensity pattern. The
spectrogram shows how the projected pattern increases in frequency as the plates recede.

In Figures 11 and 12 we show the plates of Figures 7 and 8 rotated around a vertical axis. Both the
fundamental frequencies and the overtones show the same effects of the change in orientation. In the
following discussion, we describe how to quantitatively extract shape information from the spectrograms of

textured surfaces by calculating the effect of depth and orientation on the spatial frequencies of the texture

pattern.

4.1 Mathematical Formulation

The coordinate system and other quantities are defined as in Figure 13. The pinhole of a pinhole camera

is placed at the origin of the right-handed (X3D.Y3D.Z3D) coordinate system, looking along the -z3o axis.

Objects are projected onto the image whose axes are (x. y). The pinhole-to-sensor distance is d, meaning that

point (x3n. Y3n. z3n) will be projected onto the image plane at the point (x. y) (_= --z3o"-z,o)underperspective.
Thereisa surfaceinfrontofthecamerawhosedepthisgivenbythefunctionc(x3o.Y3D).Superimposedon

thesurfaceisan intensitypatterngivenbyg(s.t),where(s.t)arecoordinatesofa coordinatesystemonthe

surface.Wc willignoretheY30,Y,andtcoordinates,ineffectconfiningourattentiontothex3D-z30plane
(.Y30= 0)anda ID imageplaneinx.

On thex30-z30plane,alinerunsinfrontofthecamerawhoseequationisx3Dsin0+z3Dcos0 = - p.2 We will
supposethatthislinehasaperiodicpatterng(s)superimposedon it.We ,"illfindtheperspectiveprojection

ofthispatternontotheimageplane,andthencalculatetheinstantaneousfrequencyoftheprojectionsowe

2In u'nns of traditional shape-from-texture notation (c.f. [Wit81]), the tilt angle here is always zero because we am wod_ing in
only two dimensions, while//is like the slant angle except that the slant angle cannot be negative and _ can be.
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ideal spectrogram

(sketch)

Figure9: Platewith sinusoidrecedingto vanishingpoint
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Figure 10: Two plates with sinusoids forming a convex comer

D

Figure 11: Two rotatedplates with sinusoidal and square wave gratings
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Figure 12:Two rotatedplates withBrodatztextures
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Figure 13: Geometryof 1D imageformaucnthroughpinhole
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can apply the spectrogram. We will find that the instantaneous frequency is a function of the orientaKe-'
o¢ the line, n,eaning that the s'0ectrogram can be use to determine this parameter. Points on this line are
parameterized by s, whele s - 0 occurs at the intersecdon of the line and its perpendicular to the origin.
Given an s. we have

(x3D.z3D) = (-p sin 8 + s cos 0. -/9 cos 0 - s sin O)

which projects t,',

-psin0+ scos0
x=d

p cos8+ ssin(9"

Solving for s, we have have the position along the line for a given x on the image plane:

-dp sin8 - xpcosO
s(x)= (3)

xsinO - dcos0

Suppose that the line has superimposed on it a periodic reflectance pattern given by g(s) - cos(2=uts), such
• that the frequency of the pattern along the line is ut. If the pattern is projected onto the image plane, we can

write the equation of the projected pattern by replacing the s in cos(2r,uts) with the equivalent value of s

given in terms of x in Equation 3. Thus, the projected pattern on the image plane will be given by

r

["-2=utpd sir,0+ xcos8!]
cos[R_ruts(x)] cos =?obj•

The instantaneous frequency, u(x), of cos[2:ruts(x)] is defined in the signel processing literature to be the
derivative of the argument with respect to x, which is

ut_
u(x)= (xsin0 - d cos0)2" (4)

The peak frequency in the spectrogram of the projected cosine will occur at approximately this frequency.

In a computer vision application, the known quantifies in Equation 4 are d (the pinhole-to-semor distance),
x (the pLxe.lpc_ition), and u(x) (the instantaneous frequency from the spectrogram). The unknowns are
ut (the frequency of the pattern along the line), and p and 0 (the parameters of the line). Since ut and p

occur as a produc' in Equation 4: they cannot be distinguished from each other. This is a manifestation of a
familiar effect: a small object (high frequency) at a small distance is indistinguishable from a large object
(low frequency) at a large distance. Thus, we treat the product utp as a single unknown. With 0 as the other
unknown, we can solve Equation 4 for 0 and utp if we have two or more measurements of (x. u(x)). The
result ira space/frequency formulation of the shape-from-texture paradigm,

4.2 Extracting Shapefrom the Spectrogram

To demonstrate "_euse of Equation 4, we will determine parameters of the two plates in Figure 11 _.._,:ed on

the spectrogram of the center row. We simplify the spectrogram to u(x), the dominant frequency, determined

18
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Figure 14: Peakfrequenciesfrom spectrogramef Figure 11

by findingthemaximumvalue in eachcolumnof the spectrogram.These valisesareshown in Figure 14 as
the dotted,stairstep-likeline. The stairstepeffect is due to the limitedresolution of the DFT, which is in
turndue to the limitedsize of the window used to calculatethe spectrogram.This low resolutionmeans that
manyadjacentpoints will appear to have equal instantaneousfrequencies. If the insmuumeousfrequency
of two adjacent points is equal, it implies that the surface is perpendicularto the line of sight, which is
usually not the case. Thus,we calculatea "subpixel"value of the instantaneousfrequencywhich gives better
resolutionthan the rawDFT. Wecalculate the subpixel estimate by fitting a quadratic to the peak value and
its two vertical neighbors and then finding the maximum of the quadratic. This is done for each column
in the spectrogr",an.The higher resolutionestimate is shown as the solid line in Figure 14. As a point :ff
reference, we show the actual instantaneousfrequencies (calculated fromEquation 4) as the dash-dot line
in the same figure. The estimatebasedon the spectrogramseems to consistently underestimatethe actual
frequency,and we arecurrentlyinvestigatingthe reason.

Each pairof (x. u(x)) values from the high-resolutionspectrogramestimates can be used to calculate a value
of (utp. _). Inorderto reduce theeffects of the waveringin the instantaneousfrequencies,we calculate each
(utp. 0) using five pairs of (x. u(x))'s placed symmetricallyaroundthe point of in_erest. We then segment
_heregions by histogramingthe (utp. 0)'s, manually picking the peaigs,and classifying each (utp. O)pair by
findingwhich peak it is closest to.
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Figure 15: Segmentation of center row of rotat,-xl,patterned plates

The resulting se_,_ment_tionis shown in Figure I5. The bar across the mlddi¢ of the image indicates the

regions, and we show the domi_,anginstantaneous frequencies below. 1his segmentation works not only
in spite of the changing frequencies across similar regions, but because of the changing frequencies as
dictated by the mathemaucal projection of a single 3D pla_e onto a 2D image. In contrast to traditional

region-grouping methods, note that this segmentation is based on reasoning abo-.t the uniformity of intrinsic
properties of the scene, not merely the uniformity of a property in the image. In this sense, it ;s baz"xl on the
"model coherence" approach developed for color image segmentation [SKKN90].

With Me re_ious segmented, we calculate the best fit (utp. 0) from Equation 4 based on the region's (x. u(x))'s
using a gradient descent, _zation routine. The results are shown in Table 1. We know the actual values

of the parameters from the graphics routine used to generate the images, kLthis example the errors are quite
small.

We performed the same analysis for the textured plates in Figure 12. The results of the segmentation are
shown in Figure 16. This segmentation is not as good as for the other set of plates. Much of the erroroccurs

near the boundaries of the plates where the Fourier wansform window contains only part of one of the textures

or some of both. The other misclassified a_-easoccur in regions where the instantaneous frequency value has
unusual dips or wiggles. Possible solutions to this problem are using a spectral estimator which accounts for

noise, or averaging the domir_.nt frequencies from the spectrograms of neighboring points. Also, using a
variable-sized window as described in Section 7.1 may help alleviate the problem. The performance figures

in Table 1 are bas_ on a manual (perfect) segmentation of the instantaneous frequencies for the rotated,
textured plates of Figure 12. The line parameters were calculated with the same gradient descent method
used for the plates in Figure 11.
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Figure 16: Segmentation of center row of rotated, textured plates

From Figure 11 From Figure 12
Periodic Pattern Brodatz Textures

semi-automatic segmentation manual segmentation

Left Plate Right Plate Left Plate Right Plate,..

UID 0 Ulp 0 UlP 0 UlP 0

actual 177.25 50.00 ° 40.00 -60.00 ° 152.1 50.00 ° 47.0 -60.00 °

calculated 172.92 49.75 ° 39.31 -59.72 ° 141.37 50,82 ° 48.27 -58.85 °
=.

error -2.4% -0.25 ° -2.4% 0.28 ° -7.1% 0.82 ° 2.7% 1.15 °

Table 1: Actual and calculated line parameters

i
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4.3 Other Shapes

This method could be extended toother shapes in two different ways. Above we presented a method in which

the instantaneous frequencies are fit to a known class of shapes (lines) in order to derive the parameters

of the shape. The parameters were those which best fit Equation 4, which describes the instantaneous

frequencies on a line. Other equations could be derived which relate instantaneous frequencies to any

parameterized shape. Given some a priori knowledge of the shapes in the scene, the spectrogram peaks
(as well as overtones) could be used to instantiate the shapes' parameters. Alternativel), a program could

calculate local surface normals by using the instantaneous frequencies from a small neighborhood along

with an equation which relates frequency and surface normal.

Although this method and results are meant to be only illustrative, they show the power of the spectrogram

for reasoning about the effects of 3D shape in images. The spectrogram is a simple, natural method of
quantifying the relationship between texture and shape, and it requires no feature detection except for

finding frequency peaks.

5 Aliasing

Aliasing occurs when a signal is sampled at a rate less than twice its maximum frequency, causing lower-
frequency artifacts to appear in the sampled signal. This phenomenon can often be seen on television in

images of periodic patterns like striped clothes, automobile grills, or tall buildings. In two dimensional
imaging, these artifacts are called moire patterns, and they can lead to insidious problems in machine vision,

e.g. stereo matching errors [Mat89](p. 117). This is because the patterns cannot be detected in single

images without detailed a priori knowledge of the scene, meaning that in most situations there is no hope of

recovering the truc signal.

The DFT of such a signal does not give a true indication of the original signal's frequency content. The DFT

can only show frequencies up to and including the Nyquist frequency (one half of the sampling frequency).
Frequencies higher than the Nyquist frequency are "aliased down" into lower frequencies of the DFT.

This is illustrated in Figure 17, which shows a plate with a sinusoidal intensity pattern rotated to the right.

Beginning at the left of the plate, the spectrogram shows that the instantaneous frequency is rising as the plate

recedes into the distance. At a little less than halfway across the spectrogram, the peak frequency has risen
to the too of the spectrogram, which corresponds to the Nyquist frequency. Although the actual frequency
on the image plane continues to rise, it appears to decrease after the Nyquist rate has been exceeded. In this

region of the image, moire patterns begin to appear as lower-frequency variations caused by the beating of

the signal frequency against the sampling frequency. There is another "bounce" on the spectrogram alter the

apparent peak frequency has fallen to zero. This bouncing would continue if the plate were longer. If the
signal had overtone frequencies, these will bounce also, although not at the same places as the fundamental

or other overtones. This is shown in Figure 18, which is a plate whose intensity pattern is the sum of two

sinusoids. Below we examine the mathematica of the bouncing frequencies and show how the spectrogram

provides art elegant basis for analyzing these artifacts.
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Figure 17: Plate with sinus6]J showing aliasing

Figure 18: Plate with sum of two sinusoids showing aliasing
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5.1 Bouncing Frequencies

In this section we discuss the mathematics of aliasing and how it produces bouncing in the spectrogram. We

will demonstrate the effect using a simple cosine wave, although the ideas are generally applicable. The

effect is most easily visualized in the Fourier domain, so we will develop the equations in the spatial and
spatial frequency domains in parallel.

Suppose the original, continuous signal is a cosine of frequency uo cycles per unit distance.

f (x) = cos(2:ruox)

Its Fourier transform is two delta functions placed symmetrically around the frequency origin.

1[b(u+Uo)+_'(u-uo)]F(u)-

Sampling at a frequcncy of us is modeled as multiplication by a series of _'s spaced at intervals of 1 �us. The
sampled signal,f s, is

___ Us

x

= cos(2_u,,x)_ ,_(x--i)
/l=-oo Us

I'he corresponding operation in the Fourier domain is convolution with the Fourier transform of the space-
domain b's.

F,(u) = F(u)*u, _ b(u- ius)
i=-.,7_

I[_(u+Uo)+_(u uo)],u,_ _(u i,,s)2
i_--.x.

Fs(u), the Fourier domain version of the sampled cosine wave, is illustrated in Figure 19-a. It consists ,.

Fourier transform of the cosine repeated at intervals of us, the sampling frequency. These repeated Fourier
transforms are called spectral orders. Spectral order o, - {... - 2. - 1.0.1.2... } is centered at frequency
OsUs •

In order to re,. wer an estimate of the original signal from the samples, the Fourier domain representation
is multiplied by a rectangle function to extract one repetition'of the repeated transforms. (It is also sealed

I to recover the original amplitude.) The rectangle function, also shown in Figure 19-a, is cut off atby uS
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the positive and negative Nyquist frequencies. This corresponds to interpolation with a sinc function in the
spatial domain. Thus, the reconstructed signal becomes

f ,(x) = f s(x) * sinc(usx)

:os(2_UoX) _ _ i= -- * S_C,Uo..,inC-x_
/_--x

= Z cos(2"XUoi/Us)SinC[us(x - i/Us)].
im-- x.

where sine(x) = ?-gf

In the Fourier domain,

F_(u) = --rect F,(u)
Us

where

i ifl ,l >
rect " ff =

tfl l <

is a rectangle with support length b.

As shown in the top graph of Figure 19, ff ]Uol < _, the original cosine can be recovered exactly. We
illustrate in both Figure 19 and 20 what happens as the frequency of the original signal ri_es past the Nyquist
frequency. Figures 19a-d show "side views" of the situation for various, increazing values of ao from the

top down. The horizontal arrows indicate which direction the 6's will move with increasing Uo. Figure 20

shows a "top view" as Uoincreases linearly from left to right. The sp_trogram has been shaded. The four

vertical cuts in this figure correspong to the four situations shown in Figure 19.

In Figure 19-b, the cosine's frequency has exceeded the Nyquist rate, and b's from neighboring spectral
orders have moved into the the interpolation rectangle. We show how the various O's correspond with the

dashed lines drawn from graph to graph. The apparent effect of a rise in Uois a bounce in frequency, which
is more apparent in Figure 20. Just as the outgoing O's leave the interpolation rectangle, incoming b's enter,

moving toward the frequency origin. These two incoming b's continue past each other, producing another

bounce in apparent frequency, as shown in Figure 19-e. When these O's leave, they are replaced by two
more, as in Figure 19-d, and the process continues on and on. This process causes the apparent bouncing in
the spectrogram ;!lustrated in Figure 20.

In Table 2 we illustrate with equations what is happening in each of the four subfigures of Figure 19. We

label each situation with o,, the spectral order which contributes the _ in the positive half of the interpolation
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Uo os 1 frequency domain reconstruction space domain reconstruction
, 1 [b(u + Uo) + b(U - Uo) cosl'9rUoX](a) O <_uo L us�2 0 _

(b) .,,_/25 L:o_ :,_ +! I [_(, + ,_ _ uo)+ _(u- u. +Uo) cos[2:r(u.- Uo_]
(c) u, < Uo < 3us/2 -1 t- [t'(u - us + Uo)+ ¢'(u+ us - Uo) same as above

(d) 3us�2 < Uo<_2u_ +2 _ [_S(u+ 2us - Uo)+ _'(u - 2us + Uo) cos[2;r(2us - Uo)X]

(o,- _)us <_Uo<_O,Us os>0 _[_(u+o, us-Uo)+b(u-osus+Uo)] cos[2z(osus-Uo)X]
-o,us <_Uo <_(-o, + _)u, os < 0 i [b(u - o,u, + Uo)+ _(u + osus - Uo)] same as above

Table 2: Analytic expressions of Figure 19

window in frequency space. In (a), os = 0, and the cosine's frequency is below the Nyquist frequency, so
the reconstruction is true to the original signal. In (b) thc reconstruction is based on one _ from each of

the two closest neighboring spectral orders, and os = +1. The reconstructed signal is cos[2_,(us - Uo)X].

Since Uo <_us in this case, an increase in Uo(the original _ignal's frequency) will cause a decrease in the
frequency of the reconstructed signal. In (c) no new O's are introduced, but the two O's pass each other.

Thus, in (c) os = - 1. The reconstructed signal is cos[2_(-us + uo)x], which is the same as case (b) (because
cos(-t) = cos(t)). However, in (c) Uo > us, so an increase in Uocauses an increase in the _eqaency of the

reconstructed signal. The transit_ionfrom (c) to (d) is like the transition from (a) to (b), thus the frequency of

the reconstructed signe.! 5ecreases again with increasing Uo. In general, the frequency of the reconstructed
cosine is given by

Uo if os = 0
u = (5)

osus - sgn(os)Uo otherwise.

where o; is the spectral order contributing a/_ to the positive half of the interpolation function, us is the

sampling frequency, and

01 ifx<O

sgn(x) = ifx = 0
+1 ifx > O.

5.2 Unfolding the Spectrogram

Of course, it would be better to have no aliasing in the spectrogram. We could then get an accurate idea of
the true signal at e ¢ery point. We can think of the spectrogram as a distorted, windowed version of an ideal,

space/frequency representation - the ideal spectrogram. The ideal spectrogram's frequency axis extends

from zero to infinity, and it does not suffer from aliasing. We can see from the analysis in the previous

subsection that the actual spectrogram 'ff a simple sinusoid whose frequency is changing is a iolded versiot_
of the ideal spectrogram. This is illustrated in Figure 21. The folds occur at positive, integer multiples of the

Nyquist frequency, us�2. In the ideal spectrogram, the frequency peak continues to grow with the frequency

of the underlying signal, while in the actual spectrogram aliasing causes the apparent frequency to bounce
between zero and the Nyquist frequency.
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Figure 21: Folding the ideal spectrogram to show aliasing

Figure 22: Unfolded version of spectrogram in Figure 17

In Figure 22 we show an unfolded version of the spectrogram in Figure 17. The unfolded spectrogram gives
a true indication of the signal's frequency, even beyond the Nyquist limit. Unfolding the spectrogram of a
signal with overtones, like that in Figure 18, would not be as simple. Multiple peaks in the same column
may come from different folds of the ideal spectrogram. The key is to determine which fold a given peak

came irom. In the next section, we propose an algori_ _for this based on computer-controlled zooming of
the lens.

6 Lens Parameters and the Spectrogram

Much research in "active vision" concerns the control of the three lens parameters: zoom, focus, and apcmaxe.

We show in this section how these parameters affect the spectrogram, which in turn provides new insights
into how they affect the image. This point of view leads to algorithms which let us deduce intrinsic scene
parameters by purposefully altering the lens settings.
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Figure 23: Effect of zooming on imaged signal

6.1 Zoom

6.1.1 How Zoom Affects the Spectrogram

In equifocal camera lenses (such as most one-touch zoom lenses) a change in zoom can be modeled as
simply a change in magnification. We can imagine the situation in Figure 23-a where the section of the

signalwhichfallsonthecenterwindowofthespectrogramextendsfrom_ to _.We willarbitrarilycallthe
magnificationhereone,andwe willsaythattheentireportionofthesignal3ex,a bythecameraisoflengthL.

BothI_d L aremeasuredontheimageplane.Ifthereare:tpixelsinthespectrogramwindow_thesampling

frequency is __! pixels per unit distance, makin_ the Nyquist frequen W .__!. Since the spectrogram extends
in frequency from zero to the Nyquist fic_uen_.y, the spectrogram resulting from this signal will cover the
region indicated by the short, wide box in Fii,,m'e 24.

If the magnification M is changed, a larger or smaller portion of the original signal will be contained by

each window. In Figure 23-b we have indicated the effect of an increase in magnification, showing how a
smaller part of the signal is now imaged. The section of the signal which falls on the central window now

extends from _ to 2_, and the entire signal seen by the camera covers -_ to 2_¢"The magnified window

is spread out over the same number of pixels as before, so the Nyquist frequevcy is now _ pixels pea"
unit distance.

The spectrogram after the magnification change is shown in Figure 24. For an increase in magnification, the
spectrogram covers more in frequency but less in space. Tbe "area" of the spectrograr, ',actually a unifless

quantity, "spatial dynamic range") is _ and is independent of the magnification. Thus for changes in
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Figure 24: Effect of zooming on spectrogram dimensions

zoom, there is a direct tradeoff between coverage in spa e and spatial flequency. These arguments also

apply to the four-dimensional hypervolume of the spectrogram of a two-dimensional signal.

6.1.2 Dealiasing With Zoom Changes

A slight change in zoom can be used to find the true, unaliased frequency of a sinusoid, because aliased
frequencies from different spectral orders respond ditIerenfly to changes in magnification. Since image
textures can be decomposed into simple sinusoids, we could use two images taken at slightly ditIc,ent zoom
settings to dealias texture images.

Suppose as above that we have a 1-D image of a cosine of frequency Uocycles/oixel sampled at a rate of us

cycles/pixel. The cosine may be sarapled above or below the Nyquist rate. Referring to Figure 20, we can
see there will be only one spectral order contributing a ,_to the spectrogram (because the spectrogram only
shows positive frequencies up to u,/2). The apparent frequcacy of the unmagnified (M = 1) signal, ul, is
given by Equation 5, i,e.

Uo if Os = 0ut = o, us - sgn(os)_o otherwise. (6)

If the lens is zoomed slightly such that the magnification is changed to M, the samp!ing frequency (measured

in cyc!es/pixel of the unmagnified image) will be Mus cyc!es/pixel, where us is the sampling frequen'-:, on

the untrmgnified image. Tae apparent frequency of the cosine will then be

Uo if os = 0u2 = o,Mus - sgn(os)Uo otherwise. (7)

We can eliminate Uofrom Equations 6 and 7 by subtracting. Solving this difference foros gives

U2 - Ul
Os --

udM - I)
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Figure 25: Horizontally split image of al_ased plate and magnified aliased plate

We note that this equation applies for both o, = 0 and os # O. Thus, the difference in apparent frequency
between the two images is proportional to the spectral order o_. After solving for os, we can use Equation 6

or 7 to solve for Uo,which is the true frequency of the signal. The dealiasing does not require the solution
of a correspondence problem, since the two signals are related by a simple difference in magnification.

An implicit assumption here is that o, remains the same in both images. This will be true for small changes

inmagn ionunlesstlae_isveryclosetoeitherextremeoftheinterpolationwindowandthezoom change
,:auscsittobereplacedbyanother_.

We have applied this technique to the image of the receding plate in Figure 17. We show a split v .s_on of
the image in Figure 25. On the top is the unmagnified image, and on the bottom is the same image magnified

by M = 1.075. It is easily seen how the moire patterns shift. Figure 26 shows the "subpixel" frequency, peaks
from the spectrograms of the center rows of the two images. The frequency data from the magnified image

has been adjusted so it is shown in terms of the space and frequency units of the unmagnified image. The
dotted line shows the dealiased frequency based on the technique outlined nbove. Except for the glitc,,es at

the frequency extreme;', the figure shows correctly the dealiased frequency. Thus, the spectrogram has been
dealiased without detailed a priori knowledge of the scene.

6.2 Focus and Aperture

Changes in the lens' focus and aperturecombine to change the point spread function (psf) of the lens, which
can be easily visualized with the spectrogram. (The psf is a function which can be convoluted with an ideal,

sharpsignaltomodeltheeffectsofblur.)Ingeneral,pointsin sharperfocuswillshowmorehighfrequencies

thaniftheyareblurred.A smalleraperturetendstohavethesamegeneraleffectassharperfocus.Infact,in

the pinhole model we have been using (Figure 13), the aperture is infinitesimally small, meaning that every
point in the scene is in perfect, sharp focus.

We will generalize the pinhole mood by introducing a single, thin lens with a variable aperture as shown in

Figure 27. The aperture of the lens is a, _hefocal length of the lens is b, and the distance to the image plane
remains d. We can approximate, the effec,'s of focus and aperture with geometric optics. Each point in the
scene with a different value of z_ will be in sharp focus at only one point behind the lens. This point, z,

is given by the Gaus._ianLens Law: ! + _ = b1. If the image plane is not at the proper distance behind
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Figtae 26: Dealiasing with magnificationchange
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Figure 27: Geometry of 1D image formation through thin lens
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the lens, i.e. d = z, the poiait ,,,!11be spread into a blur circle. Using geometric optics, the radius of the blur

ri:cle is given b>

adil 1 1 tr(:3z_)= ..... �--
2 Ib d Z3Dt

A point can be out of focus by having the image plane in front of or behind the point of best focus. The

equation above applies to both cases, r(=3o) goes to zero when _ + _ !-z3o = b, which is a restatement of
the Gaussian Lens Law above. In the one-dimensional imaging case illustrated here, the shape of the blur
"circle" is actually a rectangle of width 2r(z3o). Thus, the point spread function of the 1D camera system is

h(x. Z3D)- 2r(z3D_rect .

where we have normalized so the area under the rectO is one. 3 The corresponding transfer function, H, is
the Fourier transform of h:

H(u. Z3D)= sine [2ur(z3D)] .

In order to calculate the effect of h(x. Z3D)on the spectrogram, _- suppose there exists a functionf (x) which

is an unblurred, pinhole projection of the scene. The new image,fn(x), taking into account the point spread
function, is a convolution of the unblurred image with h. Thus,

f h(x)-- J-_[_f (Oh(x- _.z3o)a_.

where the z3o is the one corresponding to _ on the image plane. This equation holds for changes in the
camera's aperture. It does not apply for change in the focus distance d, because this causes a change in

magnification as well as a change in the point spread function.

The point spread function h is not space-invariant, because it depends on the depth of the surface. This
means that its effect cannot be described accurately by multiplication in the frequency domain. If h were

space-invariant, e.g. due to integrating over the surface of the pixels, then the effect on the spectrogram

would be simple to describe: each windowed Fourier transform would be multip" exl by the Fourier transform

of the point spread function. This is also approximately true for the space-variant point spread function if
the surface depth varies slowly and/or the window used for the spectrogram is small. Then we have

where z-_ is a representative depth value for the region centered atx, and F(u) is the Fourier transform of the
unblurred image. Each windowed Fourier transform has associated with it its own transfer function which

depends on the approximate depth of the region within the window.

3Thispsfignoresthreeopticaleffects.Onei_diffa-action,whosemagnitudeismuchsmallerthandefocuseffectsin typical"IV
images.Thesecondis thefact thatpointswhichareoccludedin thepinholeimagecan.actuallybe seenby partsof the lensinan
imagewithafiniteaperture.Thethirdis that,bynormalizingtheareaofthepsftoone,we areignoringthemostobviouseffectof
achangeinapemare:achangein theoverallbrightnessof theimage.
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Tb;: is the approximation used for most depth from focus and depth from defoeus algorithms in computer
vision. Following Krotkov's [Kro87] depth from focus algorithm, the spectrogram can be used as a criterion
function to calculate the point of best focus over sevezal images taken at different focus settings. The setting

closest to perfect focus is the one which gives the most high frequency energy in the spectrogram at that

point. Knowing this setting along wzth a precalibrated table of focus distances, the depth to all points in the

scene can be calculated. Pentland [Pen85] uses a spectrogram, essentially, to calculate depth from defocus

based on only two focus settings. He uses the two spectrograms to calculate directly the depth to each scene
point by calculating the width of the psf.

Formulating the effects of the psf in terms of the spectrogram is a natural way to reason about the space-
variant nature of the transfer function. For example, it reveals how precisely each point can be focused.

Points in the scene with no high frequencies will never sbow high frequencies no matter how well they are

fecused, meaning that a focusing criterion function based on frequency would not be sensitive to such points.

Another issue is the separation of the space-invariant p__-tof the psf (due to, say, pixel averaging and the

camera electronics) from the space variant pa-t. It may be that the space-invariant psf is so large that depth
effect_ are insignificant.

7 Other Issues

7.1 Variable Window Size

A constant window size for the spectrogram means that the Fourier transforms cover a different number of
wavelengths of each constituent frequency. That is, a window size I over a signal of frequency u coven lu
wavelengths or periods of the signal. In detecting repetitions at different frequencies, it makes intuitive sense

that the detector window should cover a predetermined number of wavelengths rather than a predetermined

length or area. This intuition is based on the feeling that a texture pattern is one comprised of some
minimum number of similar elements rather than some minimum sized region. The conventionally defined

spectrogram uses a constant window size, which means that for higher frequency signals, more wavelengths
of the signal will be included in the window than for lower frequency signals. Thus the localization (spatial

resolution) of the constant-window spectrogram is effectively reduced at higher frequencies, because the

window is spread out over more wavelengths.

We propose adding another dimension to the spectrogram which indicates the window size I. We define the
3D spectrogram given by

x x'lff(°) e-s'z-u_d" zS/(x.u.t)= f_ w(o-

which covers all possible (positive) window sizes.

The 3D spectrogram is a great deal of data which is highly redtmdant. The constant-window spectrogram,

Sf (x. u), is a slice of Sf (x. u./) with I -- eonstam. The problem with a constant I is that, as we mentioned

above, the number of wavelengths included in the window varies with frequency. A more reasonable slice
through the 3D spectrogram is to have l .x 1/u, which means that the window width will shrink with
decreasing wavelength. This tends to make the spectrogram scale-invariant, in that the detector window will

cover a constant number of elements of a given wavelength independent of their spacing frequency. We call
this the variable-window spectrogram.
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Figure28:Constantwix,aow(top)vs.variablewindow(bottom)spectrogram
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Figure 29: Intensity profile to be matched

We show an example of the the variable-window spectrogram in the bottom half of Figure 28, which can be

compared to the traditional, constant-window spectrogram in the top half of the same figure. The variable-
window spectrogram has window size l = lO/u. One notable aspect of the variable-window spectrogram
is the large spreading of the higher frequencies. This is due to the familiar effect in Fourier analysis of a

smaller spatial domain window giving more spread in the frequency domain. Thus, the variable-window

spectrogram provides greater spatial resolution at a cost of frequency resolution. The spreading of the

high frequencies leads us to a conjecture that a nonlinear sampling in frequency may be appropriate for the

variable-window spec' ogram. In the case of I _ 1/u, the frequency sampling interval should get larger as
the frequency increases.

The 3D Gabor energy spectrum (cf. [JW88]) of a 1D signal is just the 3D spectrogram with a Ganssian

window. Gabor functions are Gaussian modulated sinusoids and are maximally compact in both space and

frequency. Since Ganssians have infinite support, the window length/in the 3D spectrogram is replaced by c,

the standard deviation of the Gaussian window. Although Gabor functions have proven popular in computer

vision applk2'_ons, we have chosen not to use the Gabor energy spectrum because other, finite-support
windows give better resolution in the frequency domain.

7.2 Repetition and Image Matching

Image matching is important for 3D stereo and motion sequence analysis. In these tasks, matches are found
by shifting one image to match the other;, the amount of shift needed at each point reveals the 3D structure of
the scene. If a portion of the image is uniform with no features, then matching is impossible; if features are
present, a match can be obtained. In the ideal case of a step intensity edge, a match can be made with infinite

precision. Usually, heuristic measures of potential precision are used, such as finding "feature points". But

here, as in other spatial vision tasks, the spectrogram is useful to quantify this effect. The match precision

available at any point in the image is limited by the highest spatial frequency present at that point. This is
illustrated in Figure 29: a narrow bump or step edge can be matched with greater precision than the shallow,

broad bump in the signal. This is reflected in the higher spatial frequency content for the more precise
fez,z,,_es, as shown in Figure 30. The figure shows an image whose scanlines are all identical to the intensity

profile :hown in Figure 29. On top is the variable-window spectrogram of one scanline, which shows that
the step edge and narrow bump have higher spatial frequencies than the broad bump, and would therefore
give higher precision matches. This spectrogram has window size I ---5/u.

The spectrogram also provides insight about another aspect of image matching: False matche_. One of the
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Figure 30: Spectrogram and repeatogram for image matching
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hardest pcoblems in motion or stereo vision is to know whether a potential feature match is a real, dependable

correspondence, or whether it is a false match with a different feature in the other image. For example, in

Figure 29 above, the right side shows several bumps closely spaced - if there were a large uncertainty in the
displacement between images, the wrong bumps might be matched with each other.

There is a clear relationship between false match potential and frequency content, for a false match must be

characterized by a repetition in the image signal at the corresponding scale. Ye4 each bump in the group

on the right of the figure has the same profile as the isolated bump just to their left. So, the distinction

must be more complex than just examination of the spectrogram at each point. The key is that false match

potential implies not just high frequency content, but a real reoetition of the image data, which means

frequency content that persists over more than one wavelength of .he underlying sinusoid. Thus, to detect
false matches (or image structure repetition in general), one must search the spectrogram for frequency

content that persists over long intervals in the spatial dimension.

To represent this, we propose a new transform we call the repeatogram, which is derived from the spectrogram

as follows: At each point x and frequency u, the repeatogram R(x. u) is the minimum magnitude of the

spectrogram over an interval centered at x and extending ft." k/2 wavelengths of the underlying sinusoid on
either side of x, i.e.

R(x.u) = -,in [S(x'.u)] forx' _ Ix - (k/2u).x + (k/2u)].

We call this the k-repeatogram, and note that for k >_1.5, the_ must be at least two relative maxima or two

relative minima of the underlying sinusoid within the interval of examination; for k > 2, there must be at

least two of each. In general, where R(x. u) is high, a real repetitive structure exists in the image, with period
1/u pixels wide.

For a spectrogram with a nonzero window size, these considerations must be modified slightly, because a

window can contain pan of a repetition before it is actually centered on the repetition, Specifically, for

a window of length I and a repetition over the range [xl .x2], the spectrog,--o.m-,,ill show a reaction to the
repetition over me range Ix1- 1/2. x2 +1/2]. The matter is further complicated by the fact that most windows,

including our window in Equation 2, drop off toward zero at their ends, meaning that the spectrogram will

be fairly insensitive to the repetition until the window is almost centered over the repetition. The effect of
these complicating factors is that the choice of k for the k-repe.atogram is dependent on the window size and

shape.

Figure 30 shows, in the bottom half, the 4-repeatogram for the profile in Figure 29. As seen in this figure,
the repeatogram makes it quite clear that the features on the right of the signal exhibit real repetition, while

the isolated bump of the same shape does not.

With the repeatogram and the spectrogram, we therefore have a powerful pair of tools for predicting the
accuracy and precision of matching displaced images. At any point, the highest significant frequency content
in the spectrogram tells how precise a match can possibly be obtained; the highest frequency with significant

content in the repeatogram tells the maximum displacement search window size that can be tolerated before

there is a danger of obtaining a false match.
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8 Conclu:atm

For now, we have developed several useful theories for computer vision based on space/frequency represen-
tations .rather th,_n to bringing any one of the techniques described above to completion. Our work thus far

has shown the versatile power of the image spectrogram rather than demonstrating any end-to-end analysis.

Our goal has been to assess the potential for this kind of approach to vision rather than try to build specific
programs to analyze this or that particular phenomena. We have presented a few experimental results, but

they are meant to be suggestive rather than definitive algorithms. Instead, we wish to point out the breadth

of this approach to low-level spatial vision, and in particular its potential contribution for:.

General Vision: As an alternative to traditional edge-finding and region-grouping methods, which are
known to be very brittle and noisy. The spectrogram also captures the 3D shape and 2D texture
characteristics of surfaces.

Matching Problems: As a way of showing specifically what displacement of stereo or motion can be

tolerated for reliable matching at each point in the image.

Active Lens Control: As a way of formulating the constraints and goals for purposeful zoom, focus and
aperture.

This line of investigation, obviously, is far from complete. In particular, we see challenges in the analysis of
complex textures such as the Brodatz patterns r_" .ann simple sinusoid and square waves; expressing the
relationship between 3D surface texture, rad; ...a-y (lighting and reflection), and 2D image texture; and the

developaac:,._oJ"ef:_fve ,algorithms to compute and analyze the spectrogram. It may also _a'n out that the

spectrogram is primarily useful not as a representation to use in the vision system itself, but rather as a way
of understg_ndingthe theo .rybehind an implementation that ttses, for example, a small set of Gabor functions

instead. In any event, we believe that the power of the space/frequency distribution will make it possible to

develop far more comprehens:, _/emethods for low-level spatial vision than the current, limited, techniques
allow.
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